KING ABDULAZIZ UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS ENTRANCE TEST FOR M.Sc. MATHEMATICS 19th Jumada Awal, 1434 / 31st March 2013 Maximum Time: Three Hours

Name:_____

I.D. #: _____

INSTRUCTIONS:

1. Solve all Eight questions given in the exam.

2. All questions are equally weighted.

3. Write complete steps in a proof.

4. To disprove a statement, provide a counter example.

		Grading	
	Assigned		Obtained
Q.1	(10)		
Q.2	_(10)		
Q.3	_(10)		
Q.4	_(10)		
Q.5(A/B))(10)		
Q.6	_(10)		
Q.7	_(10)		
Q.8	_(10)		
Total:	(80)		

Q.1.

Multiple Choice Question:

In the following, cross the the circle \bigcirc for a correct statement.

(A) The function f(x) = |cosx| is:

 \bigcirc continuous everywhere but not differentiable everywhere,

O not continuous at $\frac{(2k+1)\pi}{2}$, k is an integer,

 \bigcirc continuous everywhere but not differentiable at $\frac{(2k+1)\pi}{2}$,

 \bigcirc none of above.

(B) The quadratic function $f(x) = (x+3)^2$, $x \in [-3,0]$ has:

- \bigcirc a maximum but not minimum on [-3, 0],
- \bigcirc a minimum but not maximum on [-3,0], \bigcirc both maximum and minimum on [-3,0],
- \bigcirc neither maximum nor minimum on [-3,0].

(C) The function $f(x) = \cos x$ is one to one and onto if the domain and range are, respectively, specified as:

$\bigcirc (-\infty,\infty),$	[-1,1],
$\bigcirc [0, 2\pi],$	[-1, 1],
$\bigcirc [0,\pi],$	[-1, 1],
$\bigcirc [0, \frac{\pi}{2}],$	[-1, 1].

- (**D**) The equation $x^2 y^2 = 0$:
- represents a hyperbola,
- \bigcirc represents a parabola,
- \bigcirc represents two intersecting lines,
- \bigcirc none of above.

(E) The set $P = \{(x, y, z) \mid ax + by + cz = 0; a, b, c \in \mathbb{R}\}$ is a:

- \bigcirc line of dimension one in space,
- \bigcirc line of dimension two in space,
- plane of dimension three in space, \bigcirc
- \bigcirc plane of dimension two in space.

Q.2. (\mathbf{a}_1) Write the linear transformation T corresponding to the matrix

$$B = \left[\begin{array}{cc} 2 & 3 \\ 3 & -6 \end{array} \right].$$

 (\mathbf{a}_2) Compute the eigen values of T.

Q.2.(b) Determine whether the following matrix is invertible:

$$A = \left[\begin{array}{rrrr} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0 \end{array} \right].$$

Q.3.

(a) Let $H = \{1, -1, i, -i\}$ be the group of four complex numbers under multiplication.

True or False:

- (1) H is cyclic \bigcirc
- (2) $(i)^{-1} = i$ \bigcirc .
- (b) If G is a group such that $(ab)^2 = a^2b^2$ for all $a, b \in G$; then show that G must be abelian.

Q.3.

(c) Define the center Z(G) of a group G. Prove that Z(G) is a subgroup of G.

Q.4. (a) True or False:

Let F be a field. Then:

- (1) $\{0\}$ is a maximal ideal of F.....O.
- (2) F itself is a minimal ideal of F.....O.
- (b) If R is a ring and U is an ideal of R; let

$$r(U) = \{ x \in R : xu = 0, \forall u \in U \}.$$

Prove that r(U) is an ideal of R.

Q.4.

(c) If R is a ring with the identity element 1 and ϕ is a homomorphism of R onto another ring S, then prove that $\phi(1)$ is the identity element of S.

Solve either Q.5A or Q.5B.

Q.5A.

(a) Define a bounded sequence and show that every convergent sequence of real numbers is bounded.

(b) Give an example of a bounded sequence which is not convergent.

 (\mathbf{c}) Give an example of a bounded increasing sequence which is convergent.

If you have solved Q.5A then do not solve Q.5B.

Q.5B.

(a) If f is analytic in a region and if |f| is constant there, prove that f is constant.

(b) Show that

 $\sum_{n=0}^{\infty} \frac{z^n}{n!}$

converges for all z.

Q.6.

Define $\mathcal{T} \subset \mathcal{P}(\mathbb{R})$ as follows: A subset U of \mathbb{R} is in \mathcal{T} if and only if either $U = \emptyset$ or $\sqrt{2} \in U$. That is,

$$\tau = \{ \emptyset \} \cup \{ U \subseteq \mathbb{R} : \sqrt{2} \in U \}.$$

Answer the following problems:

(a) Prove that τ is a topology on \mathbb{R} . This topology is called the *particular* point topology.

(b) Calculate in $(\mathbb{R}, \mathcal{T})$ each of the following:

(1) int[0,3].

(2) $\overline{(1,2)}$.

(c) Prove or disprove: $(\mathbb{R}, \mathcal{T})$ is T_2 .

(d) Prove or disprove: $(\mathbb{R}, \mathcal{T})$ is separable.

Q.7.(a) Find a particular solution of:

 $u_{xx} + u_{yy} = 0$, u(0, y) = u(L, y) = 0, u(x, 0) = 0, u(x, L) = 1.

Q.7.(b) Find a general solution of:

$$(y-x+1)y'=1.$$

Q.8.

Use Newton's method to approximate the root of the nonlinear equation

$$e^{-x} - x = 0, \ x_0 = 0.5.$$

Carry out two iterations only.