$\mathbb{K} I N G \mathbb{A B} \mathbb{D} U \mathbb{L} \mathbb{Z} \mathbb{Z} \mathbb{Z}$ UNIVERSITY
 $\mathbb{F A C U L T Y} \mathbb{O F}$ SCIENCE
 DEPARTMENT OF MATHEMATICS

Entrance Test For M.Sc. Mathematics
19th Jumada Awal, 1434 / 31st March 2013
Maximum Time: Three Hours

Name: \qquad
I.D. \#: \qquad

INSTRUCTIONS:

1. Solve all Eight questions given in the exam.
2. All questions are equally weighted.
3. Write complete steps in a proof.
4. To disprove a statement, provide a counter example.

Assigned	Obtained
Q. $1_{----\underline{(10)}}$	
Q. $2_{\text {_ }}$ - $-\underline{(10)}$	
Q. $3 \ldots---\underline{(10)}$	
Q.5(A/B) (10)	
Q. $6 \ldots-\ldots$ (10)	
Q. $8_{\text {_ }}$ - $-(10)$	
Total:___(80)	

Q.1.

Multiple Choice Question:
In the following, cross the the circle \bigcirc for a correct statement.
(A) The function $f(x)=|\cos x|$ is:
continuous everywhere but not differentiable everywhere,
not continuous at $\frac{(2 k+1) \pi}{2}, k$ is an integer,
\bigcirc continuous everywhere but not differentiable at $\frac{(2 k+1) \pi}{2}$, none of above.
(B) The quadratic function $f(x)=(x+3)^{2}, x \in[-3,0]$ has:
a maximum but not minimum on $[-3,0]$,a minimum but not maximum on $[-3,0]$,both maximum and minimum on $[-3,0]$,neither maximum nor minimum on $[-3,0]$.
(C) The function $f(x)=\cos x$ is one to one and onto if the domain and range are, respectively, specified as:
$\bigcirc(-\infty, \infty), \quad[-1,1]$,
$[0,2 \pi], \quad[-1,1]$,
$[0, \pi], \quad[-1,1]$,$\left[0, \frac{\pi}{2}\right], \quad[-1,1]$.
(D) The equation $x^{2}-y^{2}=0$:
\bigcirc represents a hyperbola,
\bigcirc represents a parabola,
represents two intersecting lines,none of above.
(E) The set $P=\{(x, y, z) \mid a x+b y+c z=0 ; a, b, c \in \mathbb{R}\}$ is a:
\bigcirc line of dimension one in space,line of dimension two in space,plane of dimension three in space,plane of dimension two in space.
Q.2.
$\left(\mathbf{a}_{1}\right)$ Write the linear transformation T corresponding to the matrix

$$
B=\left[\begin{array}{cc}
2 & 3 \\
3 & -6
\end{array}\right]
$$

$\left(\mathbf{a}_{2}\right)$ Compute the eigen values of T.
Q.2.
(b) Determine whether the following matrix is invertible:

$$
A=\left[\begin{array}{ccc}
1 & 5 & 0 \\
2 & 4 & -1 \\
0 & -2 & 0
\end{array}\right]
$$

Q.3.
(a) Let $H=\{1,-1, i,-i\}$ be the group of four complex numbers under multiplication.

True or False:
(1) H is cyclic
(2) $(i)^{-1}=i \quad \bigcirc$.
(b) If G is a group such that $(a b)^{2}=a^{2} b^{2}$ for all $a, b \in G$; then show that G must be abelian.
Q.3.
(c) Define the center $Z(G)$ of a group G. Prove that $Z(G)$ is a subgroup of G.
Q.4.
(a) True or False:

Let F be a field. Then:
(1) $\{0\}$ is a maximal ideal of F.......... \bigcirc.
(2) F itself is a mximal ideal of F......... \bigcirc.
(b) If R is a ring and U is an ideal of R; let

$$
r(U)=\{x \in R: x u=0, \forall u \in U\} .
$$

Prove that $r(U)$ is an ideal of R.
Q.4.
(c) If R is a ring with the identity element 1 and ϕ is a homomorphism of R onto another ring S, then prove that $\phi(1)$ is the identity element of S.

Solve either Q.5A or Q.5B.

Q.5A.
(a) Define a bounded sequence and show that every convergent sequence of real numbers is bounded.
(b) Give an example of a bounded sequence which is not convergent.
(c) Give an example of a bounded increasing sequence which is convergent.

If you have solved Q.5A then do not solve Q.5B.

Q.5B.

(a) If f is analytic in a region and if $|f|$ is constant there, prove that f is constant.
(b) Show that

$$
\sum_{n=0}^{\infty} \frac{z^{n}}{n!}
$$

converges for all z.
Q.6.

Define $\tau \subset \mathcal{P}(\mathbb{R})$ as follows: A subset U of \mathbb{R} is in τ if and only if either $U=\emptyset$ or $\sqrt{2} \in U$. That is,

$$
\tau=\{\emptyset\} \cup\{U \subseteq \mathbb{R}: \sqrt{2} \in U\}
$$

Answer the following problems:
(a) Prove that τ is a topology on \mathbb{R}. This topology is called the particular point topology.
(b) Calculate in (\mathbb{R}, τ) each of the following:
(1) $\operatorname{int}[0,3]$.
(2) $\overline{(1,2)}$.
(c) Prove or disprove: (\mathbb{R}, τ) is T_{2}.
(d) Prove or disprove: (\mathbb{R}, τ) is separable.
Q.7.
(a) Find a particular solution of:

$$
u_{x x}+u_{y y}=0, \quad u(0, y)=u(L, y)=0, \quad u(x, 0)=0, u(x, L)=1 .
$$

Q.7.
(b) Find a general solution of:

$$
(y-x+1) y^{\prime}=1 .
$$

Q.8.

Use Newton's method to approximate the root of the nonlinear equation

$$
e^{-x}-x=0, x_{0}=0.5
$$

Carry out two iterations only.

